From application to CO2 in 180 days – biodegradable PSA tapes

7th Afera Technical Seminar Brussels, 13-15 April 2015

> Dr. Tobias Blömker tesa SE

I theagenda |

- 1. Motivation and Introduction
- 2. Principles of Biodegradability
- 3. Adhesive Design
- 4. Backing Selection
- 5. Design Example 1 (Surface Protection Tape)
- 6. Design Example 2 (Packaging Tape)
- 7. Summary

packagingindustry

General Trends in Packaging Industry

- the good news
 - the packaging industry is continously growing
 - packaging design is getting more and more important
 - packaging is supposed to offer further functionalities
- the bad news
 - the more packaging the more waste....

...we should at least use it right

wasteoptions

Worldwide Waste Managment

source: "What a waste - a global review of solid waste management (World Bank, 2012)"

regulatorycontext

Lightweight Plastic Bag Ban Regulations

- . Plastic bags banned; A tax on some plastic bags; Partial tax or ban
- probably much more to come
- growing number of customer requests over the past years

source: Wikipedia, seen on 2014-07-14; http://en.wikipedia.org/wiki/Phase-out_of_lightweight_plastic_bags#cite_note-worldbag_reduction-4

ourcontribution

How Can We Contribute?

- enable more sustainable end-of-life scenarios
- enable completely biodegradable packaging

biodegradable tape

Lead products: biodegradable films for surface protection and packaging

- biodegradability according to DIN EN 13432 (90% of material converted into CO₂, H₂O and biomass within 180 in industrial composting facilities)
- adhesion according to application
- high shear strength
- ageing stability
- clean removability
- nice-to-have: high biobased content

tesa /

biodegradabilityprinciples

What Does Biodegradability Mean?

theadhesive

Basic Architecture of PU-Based PSA

short chained diol + polyester polyol

Variations that might influence adhesive properties AND the biodegradability

- polyester composition
- diol/polyester ratio
- OH/NCO ratio
- degree of prepolymer branching
- final degree of branching

theadhesive

Polymer Design vs. Adhesive Properties and Speed of Disintegration

		Α	В	С	D
diol/polyester		0.43	0.43	0.43	0.43
isocyanate/diol (prepolymer)		0.7	0.7	0.9	0.9
isocyanate/diol (final)		0.9	1.05	0.9	1.05
peel (180°, steel)	[N/cm]	2.64	0.1	0.43	3.33
peel (180°, ABS)	[N/cm]	2.82	0.64	0.36	3.77
disintegration	[d]	49	107	14	84
micro shear test (40°C, 3 N, 15 min)	[µm]	120	19	2000	61

^{* 50} g/m², coated on 23 μm PET backing

theadhesive

Polymer Design vs. Adhesive Properties and Speed of Disintegration

		E	F	G	Н
diol/polyester		2.33	2.33	2.33	2.33
isocyanate/diol (prepolymer)		0.7	0.7	0.9	0.9
isocyanate/diol (final)		0.9	1.05	0.9	1.05
peel (180°, steel)	[N/cm]	2.1	0.23	3.65	1.37
peel (180°, ABS)	[N/cm]	2.43	0.11	2.54	1.44
disintegration	[d]	130	X	14	X
micro shear test (40°C, 3 N, 15 min)	[µm]	22	4	2000	14

^{* 50} g/m², coated on 23 μ m PET backing

owstests

Biodegradability of Adhesives With Branched Prepolymers

- branched prepolymer;
 5% crosslinker
- branched prepolymer; 4% crosslinker

^{* 50} g/m², coated on 23 µm PET backing

owstests

Biodegradability of Adhesives With Linear Prepolymers

owstests

Biodegradability of Optimised Adhesive

backingselection

Biodegradable Films Suitable as Tape Backing

- polybutyrates (e.g. ecoflex® by BASF)
- PLA blends (e.g. ecovio® by BASF)
- PBS
- PLA
- PHA
- ...

soft, low modulus

rigid, high modulus

Evaluation criteria

- mechanical behaviour (depending on application)
- temperature resistance (during coating process and storage)
- solvent resistance (coating process)
- anchorage to adhesive

designone

Adhesive Profile of a Biodegradable Surface Protection Tape

peel strength (steel)	[N/cm]	0.4
peel strength (ABS)	[N/cm]	0.6
peel strength (ABS) 21 d @ 60 °C	[N/cm]	4.0
micro shear test (max.) (15 min, 5 N, 40 °C)	[µm]	30
static shear test (10 N, 23 °C)	[min]	>10 000

- 15 -

designone

Results of Application Tests for Surface Protection Tape

			21d @ 60 °C	7d @ 40°C, 100% rel. hum.	
	discolouration		slight shadow	none	
ADC	residues	90 ° slow	✓	✓	
ABS		180° rapid	✓	✓	
	adhesion		good	good to high	
glas	discolouration		none	none	
		90° slow	✓	✓	
	residues	180° rapid	✓	✓	
	adhesion		good	good	

designtwo

Adhesive Profile of a Biodegradable Packaging Tape

peel strength (box paper)	[N/cm]	2.7 (paper splitting)
static shear test (steel, 10 N, 23 °C)	[min]	>5 000
static shear test (cardboard, 30 N, 23°C)	[min]	>1 000

designtwo l

Results of Cardboard Sealing Test for a Biodegradable Packaging Tape

number of lids	tension of lids	temp.	quality of lid			
			1	2	3	4
4	low	r.t.	✓	✓	✓	✓
4		40 °C	✓	✓	✓	✓
4	high	r.t.	✓	✓	1 mm	✓
4		40°C	✓	2 mm	1 mm	✓

thesummary

Variants of Product Design

high biobased content can be realised

→ various product designs and fields of application possible

Thank you for your kind attention

Dr. Tobias Blömker Rubber Technology & Renewable Materials Laboratory

> Quickbornstraße 24 D-20253 Hamburg Germany

fon +49 (40) 4909 3041

tobias.bloemker@tesa.com

http://www.tesa.com

